Existence of Affine Realizations for Stochastic Partial Differential Equations Driven by Lévy Processes
نویسنده
چکیده
The goal of this paper is to clarify when a semilinear stochastic partial differential equation driven by Lévy processes admits an affine realization. Our results are accompanied by several examples arising in natural sciences and economics.
منابع مشابه
Existence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Covariance Structure of Parabolic Stochastic Partial Differential Equations with Multiplicative Lévy Noise
We consider parabolic stochastic partial differential equations driven by multiplicative Lévy noise of an affine type. For the second moment of the mild solution, we derive a well-posed deterministic space-time variational problem posed on tensor product spaces, which subsequently leads to a deterministic equation for the covariance function.
متن کاملReflected generalized backward doubly SDEs driven by Lévy processes and Applications
In this paper, a class of reflected generalized backward doubly stochastic differential equations (reflected GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to ...
متن کاملExistence of Affine Realizations for Lévy Term Structure Models
We investigate the existence of affine realizations for term structure models driven by Lévy processes. It turns out that we obtain more severe restrictions on the volatility than in the classical diffusion case without jumps. As special cases, we study constant direction volatilities and the existence of short rate realizations.
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015